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Abstract. We give a multiresolution partition of pure point parts of diffraction patterns of one-dimensional
aperiodic sets. When an aperiodic set is related to the Golden Ratio, denoted by τ , it is well known that
the pure point part of its diffractive measure is supported by the extension ring of τ , denoted by Z[τ ].
The partition we give is based on the formalism of the so called τ -integers, denoted by Zτ . The set of
τ -integers is a selfsimilar set obeying Zτ/τ j−1 ⊂ Zτ/τ j ⊂ Zτ/τ j+1 ⊂ Z[τ ], j ∈ Z. The pure point spectrum
is then partitioned with respect to this “Russian doll” like sequence of subsets Zτ/τ j . Thus we deduce the
partition of the pure point part of the diffractive measure of aperiodic sets.

PACS. 61.44.Br Quasicrystals – 61.10.Dp Theories of diffraction and scattering

1 Introduction

Quasicrystals key feature is long-range order of non-trans-
lational type [1]. Diffraction patterns of generic structures
display a pure point part, a singular continuous part, and
an absolutely continuous part. The existence of a pure
point part is an indication of order. Indeed, in the case of
quasicrystals, Bragg peaks quasiperiodically span the re-
ciprocal space, and obey some scaling law. The existence
of an absolute continuous part is an indication of disor-
der. The singular continuous part, although it has been
known since Lebesgue decomposition theorem of a mea-
sure, has not been encountered in Material Science until
the discovery of quasicrystals, and is an indication of some
intermediate state between quasiperiodicity and random-
ness, see [2] and [3,4].

In this article we focus on the pure point part of diffrac-
tion patterns of aperiodic sets which are generically de-
noted by Λ. Moreover we suppose that the sets Λ are
generated by some Cut and Project scheme associated
to the Golden Ratio, denoted here by τ . The pure point
part of the diffraction pattern of a Λ is then the following
weighted Dirac measure [5]

I(k) =
∑

k∈αZ[τ ]

|ck|2δk ,

where ck is the Fourier coefficient of Λ for the wave-
length k, α ∈ R is some factor, and Z[τ ] = {m + nτ |
m, n ∈ Z} is the extension ring of the Golden Ratio. The
set Z[τ ] is the support of I(k).
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There is a discrete subset of Z[τ ] which plays a par-
ticular importance in this article, the so called set of
τ -integers, denoted by Zτ . The set of τ -integers is a
quasiperiodic set which stems from Number Theory and
Numeration Systems [6]. Loosely speaking, τ -integers are
those real numbers whose development in base τ through
the greedy algorithm have only positive powers of the base.
For example, 1, τ, τ2 and τ7 + τ4 + 1 are τ -integers, but
2τ = τ2 + 1/τ and 4 = τ2 + 1 + 1/τ2 are not τ -integers.
The set of τ -integers has the following selfsimilar property

Zτ/τ j−1 ⊂ Zτ/τ j ⊂ Zτ/τ j+1 .

Starting from this relation, we give a partition of the space
of pure point parts of diffractive measures of the sets Λ.
The method developed in the following is clearly inspired
from multiresolution analysis, such as it is encountered in
the theory of Wavelets, see [7]. Indeed, in some previous
study we have used the τ -wavelets of Haar [8] to analyze
diffraction patterns of one-dimensional aperiodic sets [9].
We shall again use the idea of multiresolution in a future
work where we partition the pure point diffractive measure
of two dimensional structures [10].

This work was ignited by a study by Gazeau and
Krejcar in [11]. They showed that in the diffraction pat-
tern of the Fibonacci chain, Bragg peaks of intensity
grater than a certain cutoff c = (2 sin(γ/2)/γ)2, where
γ = 2πτ2/(τ2 + 1), are supported by τ -integers.

In the present contribution we give a general method
to proceed to a partition of the pure point spectra of any
one-dimensional quasicrystal, without restriction on the
intensities of the Bragg peaks we consider. Our aim is
to give a geometric classification of Bragg peaks arising
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from diffraction patterns of quasicrystals. Note that we
do not tackle the problem of structure determination nor
of Patterson analysis directly. We rather propose to dis-
criminate quasicrystalline structures or to compute partial
Patterson functions on the basis of this classification.

The organization of this paper is as follows. Section 2
is an overview of the set of τ -integers. Especially we re-
call the construction of Zτ , using the so called Fibonacci
substitution, and the Cut and Project schemes associated
to Zτ and its inflated or deflated versions. In Section 3 we
use the selfsimilarity properties of Zτ in order to partition
pure point parts of diffraction patterns of aperiodic sets.
In Section 4 we give numerical examples of our partition
method on three aperiodic sets. We conclude this article
with Section 5, by giving some remarks on the relevance
of such partitions in the study of quasicrystals.

2 The set of τ -integers Zτ

Recall that the Golden Ratio, denoted by τ = (1+
√

5)/2,
is a quadratic Pisot unit, solution of the equation X2 =
X + 1. Its Galois conjugate, i.e. the other root of this
equation, is τ ′ = (1 −

√
5)/2 = −1/τ .

The Golden Ratio is associated to the Fibonacci sub-
stitution, denoted by στ , defined on the set of letters
A = {L, S} by

στ :
{

L �→ LS
S �→ L.

The fixed point of the substitution, denoted by σ∞
τ (L) =

LSLLSLSL . . ., is associated with an aperiodic tiling of
the positive real line, made with the two tiles L and S,
where the lengths of the tiles are �(L) = 1, �(S) = τ −1 =
1/τ . As such, the nodes of this substitution tiling are the
positive τ -integers, Z+

τ = {0, 1, τ, τ2, τ2 + 1, . . .}. It is left
to the reader to check that any element of Z+

τ can be
uniquely written in the form

∑k
i=0 ξiτ

i with k ∈ N and
ξiξi+1 = 0, using the identity τn = τn−1 + τn−2, n ∈ Z.
The complete set of τ -integers is given by

Zτ = Z
+
τ ∪ Z

−
τ ,

where Z−
τ = −Z+

τ . One can see that, by construction, the
set of τ -integers is symmetric with respect to the origin.
The set of τ -integers is a selfsimilar set

Zτ/τ j−1 ⊂ Zτ/τ j ⊂ Zτ/τ j+1 , (1)

where j ∈ Z.
Another important issue for the rest of the article is

the construction of the set of τ -integers, within the Alge-
braic Cut and Project formalism [12]. Denote by Z[τ ] =
{m + nτ | m, n ∈ Z}, the extension ring of the Golden
Ratio. We define the Galois conjugation as the following
automorphism of Z[τ ]

′ : x = m + nτ �→ x′ = m + nτ ′ = m − n

τ
, (2)

where m, n ∈ Z. Now define the aperiodic set ΣΩ

ΣΩ = {x ∈ Z[τ ] | x′ ∈ Ω} ,

where Ω, referred to as the window of ΣΩ, is a bounded
subset of R of non-empty interior, see [13] and [14]. The
sets of positive and negative τ -integers are given by [16]

Z
+
τ = Σ(−1,τ) ∩ R+ ,

Z
−
τ = Σ(−τ,1) ∩ R− ,

leading to

Z+
τ

τ j
= Σ(−τ j,τ j+1) ∩ R+ , (3)

Z
−
τ

τ j
= Σ(−τ j+1,τ j) ∩ R− (4)

with j ∈ Z.
Note that this construction is equivalent to the tradi-

tional higher dimensional Cut and Project scheme, with
the sets Zτ/τ j being embedded in the so called parallel
space, and their conjugated sets (−1)jτ j(Zτ )′ begin em-
bedded in the so called perpendicular space. However one
should be careful when discussing the “window” of Zτ/τ j ,
since we need a window for the positive part and an-
other window for the negative part, namely (−τ j , τ j+1)
and (−τ j+1, τ j), respectively.

The selfsimilarity property of Zτ , displayed in equa-
tion (1) leads to the following result. Define the set of
τ -adic numbers as T =

{
Zτ/τ j | j ∈ Z

}
. In the case of

the Golden Ratio we have T ⊂ Z[τ ]. Conversely, it can
be proven that for all x ∈ Z[τ ] there exist a j ∈ Z and a
b ∈ Zτ such that x = m + nτ = b/τ j . Therefore we have

T = Z[τ ] .

This means that the extension ring of the Golden Ratio
is the set of all real numbers whose τ -expansion is finite,
see for instance [15], and we can partition Z[τ ] using the
inflated and deflated version of Zτ

· · · ⊂ τ i
Zτ ⊂ · · · ⊂ Zτ ⊂ · · · ⊂ Zτ/τ j ⊂ · · · ⊂ Z[τ ] . (5)

Denote now by Dj = Zτ/τ j \ {Zτ/τk, k < j}, j ∈ Z, the
complement of Zτ/τ j−1 in Zτ/τ j

Zτ

τ j
=

Zτ

τ j−1
∪ Dj .

The set Dj can be written in the Cut and Project scheme
as

D+
j =

(
Σ(−τ j,−τ j−1) ∩ R+

)
∪

(
Σ(τ j,τ j+1) ∩ R+

)
, (6)

D−
j =

(
Σ(−τ j+1,−τ j) ∩ R−

)
∪

(
Σ(τ j−1,τ j) ∩ R−

)
, (7)

where D+
j and D−

j denote respectively the positive part
and the negative part of Dj . Most of the proofs of the
results given in this section can be found in [16] and ref-
erences therein.
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3 Scale dependent partitioning of diffraction
patterns

Let Λ ⊂ R be a discrete point set. In the reciprocal space,
the function giving the intensity per diffracting site is the
following limit [11]

I(k) = lim
N→∞

∣∣∣∣∣ 1
N

∑
λn∈ΛN

exp(ikλn)

∣∣∣∣∣
2

,

where ΛN is a chain of N consecutive elements of Λ and
λn denotes the nth element of the chain. It has been shown
by Hof [5] that if Λ = ΣΩ is a Cut and Project set, the
above formula well describes the pure point part of the
diffraction measure of the set ΣΩ, i.e. the Fourier trans-
form of its autocorrelation, and I(k) is then the following
measure

I(k) =
∑

k∈(ΣΩ)∗
|ck|2δk ,

where δk denotes the Dirac delta function at k, and ck is
the Fourier coefficient of Λ for the wavelength k. A Bragg
peak is then defined as the weighted Dirac measure
|ck|2δk. The set (ΣΩ)∗ is dense in the reciprocal space.

We shall now give a partition of I(k) using the
selfsimilar properties of Zτ .

Recall that when the Cut and Project scheme of ΣΩ is
associated with the Golden Ratio, with a certain choice of
unit in the physical space, the support of the pure point
diffractive measure of ΣΩ is (ΣΩ)∗ = 2π/(τ2 + 1)Z[τ ].
Bragg peaks are located at [17]

k = k|| =
2π

τ2 + 1
(m + nτ) =

2π

τ2 + 1
b

τ j
, (8)

in the reciprocal parallel space, and at

k′ = k⊥ =
2πτ2

τ2 + 1
(m − n

τ
) =

2πτ2

τ2 + 1
(−1)jτ jb′ , (9)

in the reciprocal perpendicular space, with m, n ∈ Z, b ∈
Zτ and j ∈ Z. We shall discard the scaling factors from
now on, and focus on the labelling of the Bragg peaks.

Definition 1 We say that a Bragg peak belongs to
scale j \ (j − 1), if it is supported by an element of Dj.

Denote by Π0 the space of weighted Dirac measures sup-
ported by Zτ

Π0 =

{ ∑
b∈Zτ

|cb|2δb

}
.

In the same fashion, denote by Π1 the space of weighted
Dirac measures supported by Zτ/τ

Π1 =




∑
b∈Zτ /τ

|cb|2δb


 .

We obviously have Π0 ⊂ Π1. Denote then by ∆1 the com-
plement of Π0 in Π1, Π1 = Π0∪∆1. The set ∆1 defines the
space of weighted Dirac measures belonging to scale 1 \ 0

∆1 =

{ ∑
b∈D1

|cb|2δb

}
.

Furthermore, we can decompose each scale of the pure
point part of the diffraction pattern of ΣΩ. Let

Πj =




∑
b∈Zτ /τ j

|cb|2δb


 ,

and

∆j =




∑
b∈Dj

|cb|2δb


 ,

for a j ∈ Z. Viewed against equation (1), the sequence of
subspaces {Πj}j∈Z has the following inclusion property

Πj−1 ⊂ Πj ⊂ Πj+1 .

We have

Πj+1 = Πj ∪ ∆j+1 ,

= Π0 ∪ ∆1 ∪ · · · ∪ ∆j+1 . (10)

In the language of wavelets, Πj is referred to as the space
of the tendency, and ∆j+1 as the space of details.

We shall now extend the Galois conjugation map to
the weighted pure point measure, for all x = m + nτ ,
m, n ∈ Z

′ : |cx|2δx �→ |cx|2δx′ .

Thus we can define the conjugate space Π ′
j of Πj

Π ′
j =




∑
b′∈(Zτ /τ j)′

|cb|2δb′


 ,

and the conjugate space ∆′
j of ∆j

∆′
j =




∑
b′∈D′

j

|cb|2δb′


 .

This definition leads to

Π ′
j+1 = Π ′

0 ∪ ∆′
1 ∪ · · · ∪ ∆′

j+1 . (11)

Eventually we have partitioned the pure point part of the
diffraction measure, in the normalized reciprocal space, as

I(b) = Π0 ∪


 ⋃

j∈N∗
∆j


 , (12)

I(b′) = Π ′
0 ∪


 ⋃

j∈N∗
∆′

j


 . (13)
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4 Numerical examples

We would like to illustrate the partitions given by equa-
tion (10) and equation (11) with three aperiodic sets gen-
erated by the cut and project method.

– Σ[0,1), referred to here as the Fibonacci chain,
– Σ[− 1

τ ,0] ∪ Σ[ 1
τ2 ,1], a two-window cut and project set,

– a set obtained by the concatenation of pieces of cut
and project sets, see Appendix for details.

In Figures 1, 2 and 3, on the left hand sides of the figures,
we display the pure point parts of the diffractive measures
of the above sets, belonging to Π0, ∆1, ∆2, ∆3 and ∆4,
and the reunion of all the scales in the physical space, for
positive k’s. The right hand sides of the figures are the
images (Π0)′, (∆1)′, and so on, in the reciprocal conju-
gated space, and are slightly more subtle. Recall that the
support of ∆j is given by equations (6, 7). Therefore the
support of the conjugated diffraction patterns are

(
Σ(τ j−1,τ j) ∩ R

−
)′

∪
(
Σ(τ j,τ j+1) ∩ R

+
)′

,

for j = 1, · · · , 4. Hence there is no redundancy between
the figures from top to bottom, as one could have thought
by just looking at the figures.

It is well known that the diffraction pattern of a cut
and project set ΣΩ can be computed from the square mod-
ulus of the Fourier transform of the set

{x′ ∈ Z[τ ] ∩ Ω} .

In the case of the Fibonacci chain it has been proven that
the diffraction pattern reads

I(k) =
(

sin(k′/2)
k′/2

)2

,

with the notations of equations (8) and (9), see for in-
stance [11]. Once again we discard numerical factors.
Therefore in the reciprocal conjugated space, diffraction
patterns appear as smooth functions instead of a set of
Bragg peaks discretely supported. Thus, although the
physical signification of diffraction patterns in the re-
ciprocal conjugated space is not immediate, it appears
clearly as a handy tool for investigation. Equation (13)
is a decomposition of diffraction patterns in terms of such
smooth functions.

The use of such classification of Bragg spectra is to
further classify diffractive structures. For example, one
may compute diffraction patterns of several aperiodic
sets and decompose them as in equations (12) and (13).
This work would give a preliminary classification of well
known diffractive structures. The idea is then to decom-
pose diffraction patterns obtained experimentally and to
compare them with the files that have already been com-
puted. The figures we present show that diffractive struc-
tures are well discriminated on the basis of the decomposi-
tion we performed, and this discrimination is even clearer
in terms of the spaces (∆j)′, on the right hand side of the

figures. One could also compute partial Patterson func-
tion, arising from (∆j)′, for some j.

By combining both, classification of diffractive struc-
tures and partial Patterson analysis, one may determine
diffractive structures more easily.

5 Conclusion

We would like to conclude with three remarks.

Remark 1 Note that when Λ = ΣΩ is an aperiodic
set, such that its window Ω is a Riemann-integrable
convex set, symmetric around the origin, Meyer gave
the Fourier transform of the weighted Dirac comb µ =∑

λ∈Λ w(λ)δλ as

µ̂ =
∑
p≥1

νp ,

where νp is the weighted Dirac measure supported by the
set Λ̃p = ΣpΩ̃, p ∈ N∗. In this case, the dual quasicrystal
Λ̃ is equivalently defined by

Λ̃ = {y ∈ R, | exp(iy · λ) − 1| ≤ 1, λ ∈ Λ} ,

or by the dual convex set Ω̃. Meyer insisted that the rapid
decay of the µ̂ series explained why “only finitely many
layers Λ̃p are observed in the diffraction pattern of a qua-
sicrystal.” Scale partitioning of the diffraction pattern is
clearly underlying the sums over Λ̃p, see for example [18].

This geometrical partition of the reciprocal space al-
lows to quantify the decay of intensities on the basis of
the partition of Z[τ ] using the set of τ -integers, as in equa-
tion (5).

Remark 2 One could argue that such a multiresolution
partition of pure point parts of diffraction measures could
be performed by using any cut and project set, say ΣΩ̃,
provided ΣΩ̃ admits some deflation rule, leading to a
“Russian doll” like selfsimilar sequence of cut and project
sets embedded in Z[τ ]. And one would be right. This mul-
tiresolution partition based on τ -integers is a guideline
to help determining which is the proper Russian doll se-
quence to choose to analyze the pattern. This leads us to
the final remark.

Remark 3 At a certain level, this decomposition is not
fully satisfactory since we have managed to dissociate the
scales, but not the intensities. This work is, to a large ex-
tend, a preparation for some future work, where we tackle
two-dimensional structures, and where we shall present a
modified version of the multiresolution partition of the
pure point diffractive measures, combining geometrical
partition as show here and intensities partition [10].

The author wishes to thank Jean-Pierre Gazeau, Christiane
Frougny, Jean-Louis Verger-Gaugry and referee enriching com-
ments.
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Fig. 1. Multiresolution partition of the diffraction pattern of the Fibonacci chain. Negative parts are obtained by symmetry
with respect to the vertical axis. On the left column from top to bottom we display Π0, ∆1, ∆2, ∆3, ∆4; on the right column,
(Π0)

′, (∆1)
′, (∆2)

′, (∆3)
′, (∆4)

′; eventually on the last line is displayed the reconstruction of the whole pattern.
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Fig. 2. Multiresolution partition of the pure point part of the diffraction pattern of the aperiodic set Σ[− 1
τ

,0]∪Σ
[ 1
τ2 ,1]

. Negative
parts are obtained by symmetry with respect to the vertical axis. On the left column from top to bottom we display Π0, ∆1,
∆2, ∆3, ∆4; on the right column, (Π0)

′, (∆1)
′, (∆2)

′, (∆3)
′, (∆4)

′; eventually on the last line is displayed the reconstruction
of the whole pattern.
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Fig. 3. Multiresolution partition of the pure point part of an aperiodic obtained by concatenation of pieces of cut and project
sets. Negative parts are obtained by symmetry with respect to the vertical axis. On the left column from top to bottom we
display Π0, ∆1, ∆2, ∆3, ∆4; on the right column, (Π0)

′, (∆1)
′, (∆2)

′, (∆3)
′, (∆4)

′; eventually on the last line is displayed the
reconstruction of the whole pattern.
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Appendix

The third model of quasicrystal of which we compute the
diffraction pattern is given by the following concatenation
of pieces of cut and project sets

Σ(−1/τ,0) ∩ [−τ20, γ1[⋃
Σ(−1/τ2,1/τ3) ∩ [γ1, γ2[⋃
Σ(1/τ,1) ∩ [γ2, γ3[⋃
Σ(−1,−1/τ) ∩ [γ3, γ4[⋃
Σ(−1/τ3,1/τ2) ∩ [γ4, γ5[⋃
Σ(0,1/τ) ∩ [γ5, γ6[⋃
Σ(−1/τ4,1/τ−1/τ4) ∩ [γ6, τ

20[ ,

with

γ1 = −(τ19 + τ16 + τ8 + τ4 + 1) ,

γ2 = −(τ19 + τ15 + τ9 + τ7 + τ3 + 1) ,

γ3 = −(τ18 + τ13 + τ11 + τ9 + τ7 + τ5) ,

γ4 = τ13 + τ8 + τ3 + τ ,

γ5 = τ17 + τ14 + τ11 + τ7 + τ3 + 1 ,

γ6 = τ19 + τ13 + τ9 + τ5 .
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